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Forced Transverse Vibration of a Solid
Viscoelastic Cylinder Bonded
to a Thin Casing C

The amplitude versus frequency-response spectra of stress and displacement components
within a solid viscoelastic cylinder bonded to a thin elastic casing are obtained when arbi-
trary normal and tangential stresses wre applied to the outer surface of the casing.
Special consideration is given to assemblies whose cores are made either of a Voigt ma-
terial or a Maxwell material. A quantitative comparison of the bond stress amplitude
spectrum at the lowest circumferential wave number reveals for both Voigt and Maxwell
cores, and for small values of retardation time and relaxation time, respectively, that the
amplitude ratio between the radial bond stress and the lateral pressure decreases with
wncreasing values of the time constant. As the time constants get larger, the resonant
amplitude increases for the Maxwell material, and decreases for the Voigt material.
The Voigt core essentially behaves like an elastic solid at small values of its retardation
time, and like a viscous fluid at large values of its retardation time. The Maxwell core
essentially behaves like a nonviscous fluid at small values of its relaxation time and like

an elastic solid at large values of its relaxation time.

Introduction

I-ET Us investigate the response to a forced vibration
of a long solid viscoelastic cylinder bonded to a thin casing. The
vibration inducing excitation consists of a time-varying surface
pressure and shear stress applied to the outside of the casing in
such a way that their spatial variations are only in the circum-
ferential direction. The assembly is assumed to be long enough
to be analyzed from the point of view of plane strain, so that the
displacements in the longitudinal direction may be neglected.

The problem under consideration has a considerable number of
technologically important applications in the field of solid pro-
pellant rocket motors. During high velocity motion of a rocket
through a compressible fluid medium, surface pressures may be
met which are of the pulse type, or which may be represented by
stochastic functions, or which are of the periodic type. The
pulse-type pressure arises from uniform waves propagated
through the medium, stochastic pressures are developed from
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acoustic noise, and periodic pressures arise from sources of steady
vibration in the medium. The vibrations developed during each
of the foregoing loadings induce stresses whose magnitudes affect
the structural integrity of the assembly and represent one of the
factors which has to be taken into consideration in an evaluation
of the reliability of the assembly during operation.

In the present paper, equations will be derived from which one
can evaluate for specific time-dependent loading programs, both
the normal and shear stress at the interface between a viscoelastic
cylinder and its casing, as well as equations for the radial and
tangential stress and displacement components throughout the
rest of the assembly. The newly derived relations will be used to
obtain some numerical results for a particular set of geometric
and material parameters so that a quantitative comparison can
be made between a Voigt type and a Maxwell type of viscoelastic
core with several different values of retardation time or re-
laxation time, respectively.

The forced-vibration analysis to be presented is an extension of
a previous paper by the authors [1],2 which dealt with the free
transverse vibrations of elastic assemblies geometrically identical
to the one herein considered. The extension to forced vibraticns
of materials with viscoelastic stress-strain properties is ac-
complished by the use of “a modification”” to a dynamic corre-
spondence principle suggested by Bland [2].

Some theoretical work on the forced transverse vibration of a
solid, elastic cylinder has been previously presented by Bal-
trukonis [3]. He found the steady-state displacement field in a
cylinder due to a rigid-body translation of the surface which
varies sinusoidally with time. Baltrukonis’ theoretical solution

2 Numbers in brackets designate References at end of paper.
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was subsequently studied by Magrab [4] who plotted the dis-
torted position of circles and rays initially inscribed on the
cylinder.

Forced vibration of a hollow viscoelastic cylinder assembly
has also been analyzed by Henry and Freudenthal [5]. They
treated only axisymmetric motion in meridional planes and used
membrane equations for the shell in considering the interaction
between the inner eylinder and the outer shell.

Rogers and Lee [6] studied the effect of time-dependent loads
on a compressible viscoelastic cylinder bonded to an elastic shell,
by neglecting vibratory inertia forces. Achenbach [7], on the
other hand considered the dynamic response of a case-bonded
viscoelastic cylinder with an incompressible core.

Differential Equations and Boundary Conditions

A typiecal cross section taken through the assembly is shown in
Fig. 1. The viscoelastic solid propellant is designated ‘“‘core”
and lies In the region 0 < r < a. Atr = qa, the core is bonded to
a thin casing of wall thickness h. During forced vibration, sur-
face loads p(8, ) and ¢(8, t) are applied to the outer surface of the
casing in the normal and tangential directions, respectively. The
radial and circumferential coordinates are designated r, § while
the parameter time is designated ¢. Under load, particles are
displaced in the radial direction w(r, 8, t) and in the tangential
direction »(r, 8, ¢). There is no displacement in the axial direc-
tion. The associated radial, circumferential, and shear stresses
T, Ogg, and o4, respectively, are shown on a typical element de-
scribed in polar coordinates. With no additional applied body
force on the propellant, the differential equations for the resultant
displacement vector w of the core are the same as they are for the
free-vibration problem. Hence the current presentation can be
shortened by referencing the fact that the authors have shown [1]
the differential equation for the displacement vector w to be

o*w

4
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for an assembly with a compressible elastic core,® where K is the
bulk modulus, @ is the shear modulus, and -y is the mass density
per unit volume of the core material; ¢ is the mean normal stress.
Thin shell theory is used to deseribe the deformation of the
casing. The deflection of the casing middle surface, is approxi-
mately equal to the deflection of the core at r = a, because of
continuity considerations. Hence the differential equations of
the easing may serve as the boundary conditions for the displace-
ment equations of the core. The required boundary conditions
were derived by the authors (1] for an elastic case and core, with
the case free of external swrface tractions. When they are
modified to include an externally applied radial pressure p(8,t)
and a circumferential shear stress ¢(6,¢) at the outer surface of
the casing, the boundary conditions at » = a become
0%
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The symbol E, v are, respectively, Young’s modulus and
Poisson’s ratio for the casing material. D = Eh3/12(1 — »?) is
the flexural rigidity of the casing, and p is the mass density of the
casing, per unit area of the middle surface.

* The current paper is concerned with an assembly having a com-
pressible elastic core. The corresponding solution for an assembly
with an incompressible elastic core is also presented in reference [8].
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Fig. 1 A solid cylinder bonded to a thin casing

The foregoing describe the elastic field equations and appro-
priate boundary conditions to be used in the investigation of the
forced-vibration problem.

Bivariate Fourier Transform

To solve the system of partial differential equations presented
in the previous section, use will be made of the bivariate Fourier
transform, to be defined. The resulting equations will be solved
and the inverse transform will then be applied. This method of
solution imposes one apparently undesirable restriction; namely,
the inability to impose initial conditions on the displacement vec-
tor w{r, 8, 0) and on the velocity vector ow(r, 8, 0)/0l. As a
consequence of this restriction only a particular solution is ob-
tained which nevertheless is important because of its use in com-
puting the steady-state response to periodic inputs.

The bivariate Fourier transform will be defined and some of its
properties observed by discussing an arbitrary scalar function
f(r, 8,1). Later the transform will be applied to the displacement
vector and to the stress components. The bivariate Fourier
transform (or spectrum) F, is obtained by the double integration
of f with respect to # and {. The function f ¢an be recovered from
F, by taking the inverse Fourier transform of F,. Specifically,
the functions F, and f are related by equations (3a) and (3b)

F(jw, r) = f i f ) e~dttnd gy 9 0dfdt  (3a)

©
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n= — —®

Many useful relations can be derived from equation (3), including
the following

S, 0,8) = f(r, 0 + 2, 1) (4a)

o\ _ oo, ofN .o
o(2) - s 5(2%) = s

) denotes the Fourier transform of the

(4b, ¢)

where the symbol F(
quantity in parentheses.
It is convenient in the present analysis to introduce the Fourier
transform of the vector displacement function w(r, 8, t), which is
equal to u# + 1)0 where the radial and circumferential displace-
ments v and v are scalars; 7, § are the base vectors in the radial
and circumferential directions, respectively. The operation of
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forming the transform of w, which is a vector, can be accomplished
by first applying the & operator to the scalar displacement com-
ponents v and v. Should we define U, as F(w) and V,, as F(v),
the vector field W, equal to U,# + V,§ may then be interpreted
as the Fourier transform of w.  The vector space associated with
such an interpretation is Hermitian over the field of complex
numbers,

The foregoing interpretation of the Fourier transform of the dis-
placement vector can be applied to equation (1) in order to obtain
the transformed displacement equation for an assembly with a
compressible core,

(K + 4 @) grad div (W)
— G cwl curl (W,ef™) + v W, = 0 (5)

The Fourier transform may also be applied to the associated
boundary conditions. In addition to the displacement compo-
nents u and v, the boundary conditions contain the externally ap-
plied radial pressure p, the externally applied shear stress ¢, and
the mean normal stress . These are all scalars too, so that the
Fourier transform may be applied directly. F(p)is to be called P,,
F(g) is to be called Q,, and F(o) is to be called Z,; U, and V,
were previously defined. When the Fourier transform of equa-
tions (2) are taken, it is found that the transform of the boundary
conditions at the interface » = @ may be written

Eh

(;(T——“_) — nU,) — pwU,
(K )

d T3

= - (K + G) 7, — "L (U, + jnV,) (6a)
or a

Eh 2
2 (U, + jnV,) — o (V, = jnU,) + pe?V,
a?(1 — p?) at

oV, G .
= =@ A G (U, — V) (6)

The general solution to equation (5) and with W, expressed
as U7 + V.0 withn = 0,1, 2. . ., was previously found by the
authors [1] to be

U, = — ‘Z;f b,J,.(Br) + ¢, l:aJn-l(ar) - :—LJn(ar)] (7a)

= b, [B.fn-lwr) - %wm] + 7 o, (ar)
(7)

where J, (x) is Bessel’s function of the first kind of order n, and

forn =0,1,2,...

a=wVy/(K +46); B=wVy/G (8)

The coefficients b, and ¢, are arbitrary constants.

Values of the foregoing Fourier transforms for negative in-
tegers n can be obtained by applying the property that the spec-
trum at negative n and positive w must be the complex conjugate
of the spectrum at positive #» and negative w. In general the
spectra must be evaluated for all real frequencies w, from —
to 4.

Each of the general solutions contain arbitrary constants b, and
¢,. They may be expressed in terms of the input spectra P,(jw),
Q,.(jw) by solving the two linear, nonhomogeneous equations ob-
tained when the general solution is substituted into the boundary
conditions.

The aforementioned linear, nonhomogeneous equations may
be obtained by substituting the general solution of equation (7)
into the boundary conditions of equation (6). They may be

written
b _a [P
" [] D [Qn] ©
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The term M in the previous expression is the 2 X 2 matrix defined

J.() 0 () 0
M= A
':() /"(z)jl + B [ 0 «’:‘Jn—l(z)jl o

It contains the second-order matrix A whose elements a,, are de-
fined

- : A\ | e &
au—]n{(n—f—l)[n +12<h>:| Aw 2(n+l)D}

(11a)
iy = 7N ‘(n + 1) [nu + 12 <a>" )Ga’jl et E
D
<K if > 7
an = ”{kw? = n(n + 1)[n+ 12 ?) ]}
= [£2 — 2n(n + 1)) Ga? (11¢)
an = jn {n(n + 1)|:n + 12 <Z>J

3
— Aw? — 2(n + 1) C%z} (11d)

The preceding contain newly defined parameters
{=0Ba, N=pa'/D

The matrix M also contains the second-order matrix B whose ele-
ments b, are defined

z = ag,

264* \2
by = Jn[ w12 <;1—> ] (12a)
{1
2 2G S
b = —nt — 12 <%> + 5 e (12b)
2 ZG 3
bgl—n2[1+12<%>:]— D“ — e (12¢)
9, 3 2
b = jn {fj’g ~ [nz 112 <%> ]} (12d)

The spectra U,, V, of the displacement components are
evaluated by solving equation (9) for b,, ¢, and substituting the
results into equation (7). Determination of the core stress com-
ponents will be discussed in the next section.

Fourier Spectra of Core Stress Components

The stress and strain components within an elastic material
obey Hooke’s law. By making use of the strain-displacement
relations, each of the stress components can be expressed in terms
of the displacement components. For a problem of plane strain
the stress-displacement relations in cylindrical coordinates may

be written
o v 1 ou
=G|— - -4+ -— 13
G0 <b7‘ ’ + , 0) ( 7(1)

(13d)
(13e)
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where the shear modulus @ and the bulk modulus K are related
to the moduli of elasticity E and Poisson’s ratio v by the rela-
tions
E . E
=ity KTsa oo (14)
Fach of the stress components are scalar functions so that it is
permissible to form the bivariate Fourier transform in each case.
The resulting spectra of the stress components 2,69 is equal to
F(o,;) with 4, jequal tor, 8, or 2. When the Fourier transform of
equation (13) is taken, it is found, in view of equation (4¢) that
the spectra of the stress components can be expressed in terms of
the spectra of the displacement components by the relations

v .
2,00 =G (91 - g Un> (15a)
or r r
4 ) 2 1
3o = (A + ;G> oU, + <K — —G> <~> (U, +jnV,)
3 or 3 r
(15b)
2 0 4 1
2,00 - {K 2@ oU, +{\K+ ;&) (-) WU, +mnV,)
3 or 3 r
(15¢)
2 K1 1
zn(::) — (I{ - = G> l.—" —’r - (Un -+ jnV-n)] (15d)
3 or r
2,00 = e =0 (15e)

Solutions for U,, V,, and Z, were presented in the previous
section. Hence the spectra of stress components can be deter-
mined directly from equations (15).

Extension of Solution to Linear Viscoelastic Materials

The foregoing solution to the forced-vibration problem of an
elastic assembly is easily extended to linear viscoelastic materials,
by making use of “‘a modified form” of a dynamic correspondence
principle originally derived by Bland [2]. A modification to the
original work is required because of the use of the bilateral
Fourier transform in the present analysis, which is not identical
to that used by Bland.

The dynamie¢ correspondence principle to be employed states
that the spectrum of the viscoelastic solution can be obtained
from the spectrum of the corresponding elastic solution simply by
replacing the elastic constants by their corresponding viscoelastic
complex moduli. To verify the dynamic correspondence princi-
ple for the present analysis, let us start with the stress-strain re-
lations for a homogeneous isotropic linear viscoelastic core
material [2].

P8 = Q.; 5,5 =10z (16a)
PJloy = Qe (16b)
Where P, Q,, P,’, @, are the linear differential operators
r=n oy r=n . _
P, = 720 P Q. = ,;0 @, (17a, b)
Pe=Tein =Ty ied

S;; and e;; are the stress and strain deviators, respectively, and
where o, and €, are three times the mean normal stress and
strain.  The coefficients p, p,’, ¢., ¢.” are constants. The stress
and strain deviators are related to the stress tensor o,; and the
strain tensor €;; by the relations

8i; = 05 = 30ub;; (18a)

e (18b)

- 1
i = €y T ?{51;1;51;

where §,; is the Kronecker delta, equal to unity when 7 = j and
equal to zero when ¢ # j.

Just as each stress and displacement component, is a scalar func-
tion, so is each of the stress and strain deviators. Hence, it is
permissible to take the Fourier transform of equation (16) and
write

Ps(jw)g(sij) = QS(jw)g(eij)
P (jo)F (o) = Q' (j)F(e;,)

In order to rewrite the previous relations in such a form that
they appear similar to Hooke’s law, let us define the viscoelastic
complex moduli G,(jw), K, (jw) as

(19a)
(19h)

G.(jow) = 3Qs(jeo)/P(joo) = F(8;;)/F (es;) (20a)
K,(jo) = 3Q,'(jw)/P,'(jw) = 35(0::)/F(eir)  (20b)

Then the transformed viscoelastic stress-strain law may be
written

]

g(sij) 2Gcg(eij)
F(oy) = 3K.5(e;;)

(21a)
(21h)

The previous relations would look like Hooke’s law for an elastic
material if stress and strain were to replace the Fourier transform
of stress and strain, if the shear modulus G were to replace the
complex shear modulus G,(jw) and if the bulk modulus K were
to replace the complex bulk modulus K, (jw).

The foregoing analogy suggests an approach to the vibration
problem in which the core is made of a viscoelastic material.
The approach is based on the analogy and the fact that the strain-
displacement relations and the equations of motion of an as-
sembly with an elastic core or a viscoelastic core are the same;
the only difference arises in the constitutive equations; namely,
Hooke’s law or the viscoelastic relation of equation (16). The
Fourier transform of Hooke’s law has been shown to correspond
to the Fourier transform of the linear viscoelastic law, equation
(16), provided @ is replaced by G, and K by K,. Then all equa-
tions are identical and likewise their solution. Hence the solution
to an elastic vibration problem can be converted to a solution of
a viscoelastic vibration problem, by first taking the Fourier
transform of stress, strain, and displacement followed by the re-
placement of the shear modulus G by the complex shear modulus
G, (jw), and the replacement of modulus K by the complex bulk
modulus K (jw). The resulting expressions describe the spectra
of stress, strain, and displacement associated with the viscoelastic
problem.

The Fourier transform of stress, strain, and displacement asso-
ciated with elastic solutions to the vibration problem under con-
sideration were presented in the previous sections. They can be
converted to viscoelastic solutions merely by replacing G with
@, and K by K, where G, and K, are the viscoelastic complex
moduli of the core material.

Displacement Spectra for Lowest Wave Number

The general results derived in the previous sections will be
specialized for the lowest wave number n = 0, in order to present;
an explicit solution to the spectra of displacement components.

When n = 0, equation (7) for U, V, reduces to

Uy = Vy = _6b()~]1(67") (22&, b)

where the constants by, ¢; are the solutions to the two algebraic
relations of equation (9) which reduce to

. [bo] _ @ [po] (23)
€y D Qo

The matrix M forn = 01is

IR o N IR I 1o B
M ”A[o Jo(z)] B [o le(z):I

where the matrices A and B are

— oot (qer);

(24)
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0 (K + 4 G) 22/ D
A = 3 (25a)
— Gt/ D
2Ga? a\?
0 Aw? A e — 12
B = D <h> (25h)
—Aw? — 2Ga*/D 0
Hence the constants are preseribed by the relations
alde
by = - P 26a)
B0 = Gpta + 2001,5) = GTIo0) (
o abP
Cy ==
4 Eh
= - : 4 o2G¢ — ——— |.
(K + 3 G) zJo(2) [pam + 2G o v?)] J1(z)
(26bh)

2y (jw, @)

elastic materials will be varied so that the effect of changing re-
tardation time and relaxation time can be evaluated.

First let, us examine the behavior of an assembly in which an
elastic case is bonded to a viscoelastic solid core which is assumed
to be elastic in dilatation, but acts like a Voigt solid in distortion.
Our objective is to determine the frequency response of the radial
bond stress o,,(a, 6, t) due to a lateral pressure loading p(6, ).

It is to be recalled that the general frequency-response function
2, (jw, a)/P,(jw) for the aforementioned viscoelastic problem
can be obtained from equations (7), (9), (10), (11), and (15b) by
setting @, = 0 and replacing G by the complex shear modulus

G, = Go(l + jwr) (28)
where 7 is the Voigt retardation time and Gy is the static modulus
of rigidity.

At the lowest circumferential wave number, n = 0 the response
can be cast in the form

2Jo(z) — 2(Ce/Ch)2T1(2)

(29)

Py(joo) { p [k C.\? E h
e I 4 o 2 - | - J — zJ
hy \a #+ o8 G(1 — v?) \a (@) o(z)
The constant b is seen to depend only on Qs whereas the constant ~ where the dimensionless frequency
¢ is dependent only upon P,.  When equation (26) is substituted .
into equation (22), the spectra of displacement components are 2 = wa/Cy (30)
obtained. and the terms
v = aPu] (ar) C= VE + 307 = VG y 31
Eh .4
pow? + 2G — ————  Ji(z) — ( K + - Q) 2Jo(z) One should observe that when h/a vanishes, the ratio 2, (jw,a)
a(l — v?) 3 R ’ . o
/Po(jw) is equal to —1 at all frequencies w. This oceurs be-
(27a)  cause of the boundary conditions at » = a, which force the surface
pressure p(f, ¢) to be equal to —o,.(a, §,1) when the casing is
Vo aQo/1(Br) (27b)  nonexistent.

T GEI(E) — (paw® + 2G)T(()

The displacement spectra are explicit functions of w, r for pre-
seribed values of Py, Q.

The foregoing results show that the radial displacement de-
pends only on the radial pressure, while the tangential displace-
ment depends only on the tangential surface shear. One ob-
serves, also from equation (27a) that the term U, vanishes as the
bulk modulus becomes infinitely large. Hence a nonzero radial
displacement cannot be independent of # in a solid incompressible
core in a state of plane strain. Also, with V,(jw, ) independent
of the bulk modulus K, it follows that the response of the as-
sembly to a tangential shear which does not vary in the circum-
ferential direction is the same for an incompressible as it is for a
compressible core material.

It is interesting to note that the forced-vibration response to a
tangential shear ¢(f,¢) which is independent of 6, without the
presence of any radial pressure p(f,t), results in a rigid-body
rotation of the casing about the assembly axis. The response to
a time-varying radial pressure which is uniform around the cir-
cumference results in radial “breathing’” of the assembly.

The spectra of displacement components Ui, Vo give the re-
sponse to swrface Joad spectra Po, Qo corresponding to a radial
pressure uniform avound the circumference of the casing, and a
uniform shear flow, respectively. The radial pressure has no re-
sultant force or moment, while the shear flow is statically equiva-
lent to a twisting couple.

Discussion of Results

It is difficult to evaluate the significance of the derived results
without considering very specific situations. Hence considera-
tion will be given to the behavior of assemblies with two dif-
ferent viscoelastic cores, one a Voigt material and the other a
Maxwell material. The characteristics of each of these visco-
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When equation (28) is introduced into equations (30) and (31)
the dimensionless frequency z is found to be

wa(Cy® /C1¥)

(32)

z =

4
Leoo v Lt 5 (/00
a

The ratio
Ca\? (00 /)2
6'—’) 1 -+ [%(02(0)/01(‘”)2(_97-]2

4 [ C®\2? ) 4 {00\ N
e GES) o [ -3 E0) D) o
where C1®, (2 are the zero frequency (static) values of C;, C,
respectively. Also,
E _ E 1
G.(1 — v Gl — ) \1 + jor
Inspection of equations (29), (32), (833) and (34) shows that the

frequency-response function depends only on six dimensionless
real parameters,

(34)

C,® L

WT o —— —_—— =
’ ’ 01(0), Go(l and 1/2)y a

T Cs and £
a h
The first parameter is proportional to the excitation frequency w.
The second parameter is proportional to the core retardation
time 7. The third parameter and the fourth are a measure of
the elastic properties of the assembly. The fifth parameter is
the thickness to radius ratio, and the sixth parameter is the ratio
of casing density to propellant density.

Let us continue owr examination of a Voigt core by computing
for the following fixed values of the independent parameters



¥
(,1(0)

.

L
hy

and for two values of the core’s nondimensional viscosity,

TC,® 7C,®
=0, and = 0.2455
a a

Consideration is given only to the three lowest natural fre-
quencies of the assembly. The results are obtained from equa-
tion (29) and plotted in Fig. 2 and Fig. 3 in the form of iEO("">/1’01
versus the dimensionless frequency wa/C:® and plotted in Fig. 4
and Fig. 5 as the phase angle /%0 /P, versus the dimensionless
frequency wa/Ci for each value of 7C,® /a.

At first the Bessel functions of complex argument z in equation
(29) were obtained using the tabulated values of Reference [9].
However these tables list Jy(z) and J,(z) for increments in £z of
5 deg, which is too coarse a mesh size for lightly damped incom-
pressible materials. A more convenient method of calculation
was obtained from equation (32) based upon the small magnitude
of the phase angle Zz; namely,

1 4 [ Cy0\2
— o~ tan 1 LI 3
5 tan s\co wT

Derivation of the simplified form is aided by the observations
that for the numerical values and frequency range used in the
example 0 > Zz > —0.05 rad. Rather than use tabulated
values, one expands J,(z) and 2J,(2) in power series in the real
variable Zz, holding ‘zl fixed. These series converge in some
interval about £z = 0. When only the linear terms in £z are
retained the power series may be written

Lz = (35)

2Jo(2) = zJo(x) + jzlJolx) — zJi(x)] L2 (36a)
Ji(z) = Ji(e) + jlado(x) — Ji(x)] L2 (36bh)
with o] = x = wa/Ci®
jlelele] i
lOOv: n=0
- VOIGT CORE
- an ELASTIC CASE
- IE,, }F:,’ cP/a =0
10

o

<)

T 1 111770 T I}!IIH T TTTTTT T

wa/d® \

4 6 10

Fig. 2 Amplitude versus frequency response of radial bond siress due
to lateral pressure

6

It is important to observe that the approximation we make
assumes [Cy®/CiO]2wr « 1, which is correct for the particular
numerical value of ¢4 /C,® = 30.35 used in the example. How-
ever wr is definitely not less than unity.

Fig. 2, which shows the stress amplitude ratio as a function of
the dimensionless frequency for vanishing core viscosity, clearly
illustrates the infinite resonant spikes at wa/C, = 2.729, 5.035,
7.739 which are the natural frequencies of the all-elastic as-
sembly, previously discussed by the authors [1]. Itis interesting
to observe the antiresonances at wa/C,® = 2.40, 5.55, 8.63.
Theoretically a surface pressure of arbitrary amplitude, uni-
formly distributed around the circumference, but sinusoidal in
time at these antiresonant frequencies would not induce any
radial stress at the interface.

The low-frequency asymptote lEU(”') /P01 = 0.450 represents
the static radial stress at the interface due to a uniform surface
pressure which is constant in time. A general expression for the
static bond stress can be obtained from equation (29) by taking
the limit of it as w vanishes; namely,

)
C,®
T e )
c,® G(1 — vy \Ci®/ 20

It should be observed that the static radial bond stress is
always less in magnitude than the surface pressure, and has the
same sign as the surface pressure. This response is due to the
ability of the case to take hoop stress.

Fig. 3 illustrates the major effects of core viscosity. It is
based on the same parameters as Fig. 2, except that 7C.©@/a
is increased from O to 0.2455. The infinite resonance spikes are
reduced to finite maxima, and the antiresonances are increased
in magnitude from zero to local minima. The calculated
resonance peaks are |20<7'” /P0$ = 12.3, 3.04, 1.43, and the anti-
resonances are IEDW /Pol = 0.028, 0.240, 0.260 in order of in-

creasing frequency.
The effect of core viscosity on attenuating the resonance peaks,

200, a)
Py(0)

(37)

T T 11177

100 ‘ o |7
- VOIGT CORE
B ELASTIC CASE
- 1557,

vc¥a= 2455

wa/cO

4 8 8 o

Fig. 3 Amplitude versus frequency response of radial bond stress due
to lateral pressure
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and on magnifying the antiresonances inereases with increasing
frequency. This is to be expected with a Voigt core material,
since a Voigt material behaves like an elastic solid for low frequen-
cies, and like a viscous fluid for high frequencies. If the core ma-
terial were to behave like a Maxwell body in distortion, that is

G, = (38)

more complicated effects would oceur.

The phase response for an all-elastic assembly may be seen in
Fig. 4. Since the frequency response for an all-elastic assembly
is always real, the phase is always real, the phase is always plus
180 or minus 180 deg, with jumps in the phase angle ZZ,0" /P,
when passing through a resonance or antiresonance.

It can be seen in Fig. 5 that increasing the dimensionless re-

Table 1
o/hfy = 1.96  E/Gy(1 — »2) = 22,500
Voigt: G. = Go(1 + jor)
Maxwell: G, = Ghjor/(1 + jor)
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Fig. 5 Phase versus frequency response of radial bond stress due fo
lateral pressure

tardation time to 7C>® /a = 0.2455, rounds the edges off the dis-
continuous phase response of an all-elastic assembly. It is in-
teresting to note from a comparison of Fig. 2 and Fig. 4, as well
as Fig. 3 and Fig. 5 that extremals in phase occur midway between
extremals in gain.

In order to obtain a comparison of Voigt and Maxwell core
materials, the first three resonance peaks of |Zo&)/Py| are
evaluated for increasing values of 7Cy® /a.  Results are listed in
Table 1.

It may be observed from this table that for both Voigt and
Maxwell cores, and small values of 7 the amplitude of Z,e /P,
decreases with increasing 7 at all three resonant frequencies. As
7 gets larger, the resonant amplitude increases for the Maxwell
material, while the Voigt material continues to exhibit decreasing
resonant amplitudes.

This phenomenon can be explained on the basis of amplitude

Comparison of resonant amplitudes of £, /P, for Voigt and Maxwell core materials

Ci® /Cy® = 30.35 h/a = 0.1

I

Ve + 26
00 = VGo/y

C,©

First resonant frequency

wa,/Cy® 120(">/P0|
70:® /g 0.00001 0.001 0.1 0.2455 | 0.00001 0.001 0.1 0.2455
M@xwell 2.729 2.729 2.729 2.729 | 302,353 3044 2108 5114
Voigt, 2.729 2.729 2.729 2.729 | 302,845 3028 30.28 12.3
Second resonant frequency
wa/C,® |26t /Py
7C,© /g, 0.00001 0.001 0.1 0.2455 0.00001 0.001 0.1 0.2455
Maxwell 5.032 5.032 5.034 5.034 79,373 812 1863 4558
Voigt 5.034 5.034 5.039 5.065 79,469 795 7.87 04
Third resonant frequency
wa/Cl(O) {Eo(") /PO!
00 /g 0.00001 0.001 0.1 0.2455 0.00001 0.001 0.1 0.2455
Maxwell 7.733 7.734 7.739 7.739 38,136 402 2108 5168
Voigt 7.739 7.739 7.755 7.849 38,153 382 3.77 1.43
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[G{[ (modulus) and phase angle £G, (argument) of the complex
shear modulus of rigidity G..

Voigt:
|6, = G V1 + (wr)? . £39a)
4G, = tan™! wr (39b)
Maxwell:
|G = Go/V1 + (1/wr)? (39¢)
LG, = tan™! (1/w7) (39d)

Since viscosity enters into the cylinder assembly only through
G, the amount of damping introduced will be proportional to both
|G| and 26,

For the Voigt material, amplitude and phase angle of G(jw) each
increase with increasing 7 for fixed resonant frequency w, so that
for sufficiently large 7 the core acts like a viscous fluid. More-
over at 7 = 0 the Voigt material has G, (jw) = Go; i.e., it behaves
like an elastic solid. Hence, at each resonant frequency, damp-
ing increases monotonically with 7 for a Voigt material.

For the Maxwell material, amplitude ]Gcl increases with in-
creasing 7, for fixed resonant frequency w; while ZG, decreases.
In the limit, as 7 — o, the Maxwell material has G.(jw) = Go;
i.e., it behaves like an elastic solid. At 7 = 0, G,(jw) = 0, so
that for sufficiently small 7, the Maxwell material acts like an
inviscid fluid. Henee, for each resonant frequency, there must
be an optimum 7, at which the core material exhibits the most
damping. Moreover, since G, is a function of w only through the
product w7, the optimum 7 must decrease as the resonant fre-
quency « increases. This theory is borne out by the results
shown in Table 1.

Summary and Gonclusion

In this paper we have reviewed the equations governing the
forced, transverse vibration of a cylindrical assembly consisting
of a solid core with a case-bonded outer shell.

Using a Fourier transform method of solution, the frequency
response of the assembly was obtained, considering both an arbi-
trary normal pressure and tangential shear applied to the outer
surface of the casing. The solution was shown to hold for a gen-
eral linear viscoelastic core, if the elastic constants are replaced
by corresponding complex moduli.

Curves of the lowest circumferential wave-number frequency
response 2,07 (jw, a)/Po(jw) of the radial bond stress due to
lateral pressure were plotted for a particular configuration.
Several values of core time constant were used, assuming a Voigt
mode} and also a Maxwell model.

The results of the present analysis were presented in terms of
the Fourier transform of the stress and displacement components.
One can evaluate each of these transforms for specific time-de-
pendent loading histories. Then, by the use of the inverse trans-
form, it is possible to determine the time-dependent relations for
stress and displacement.
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